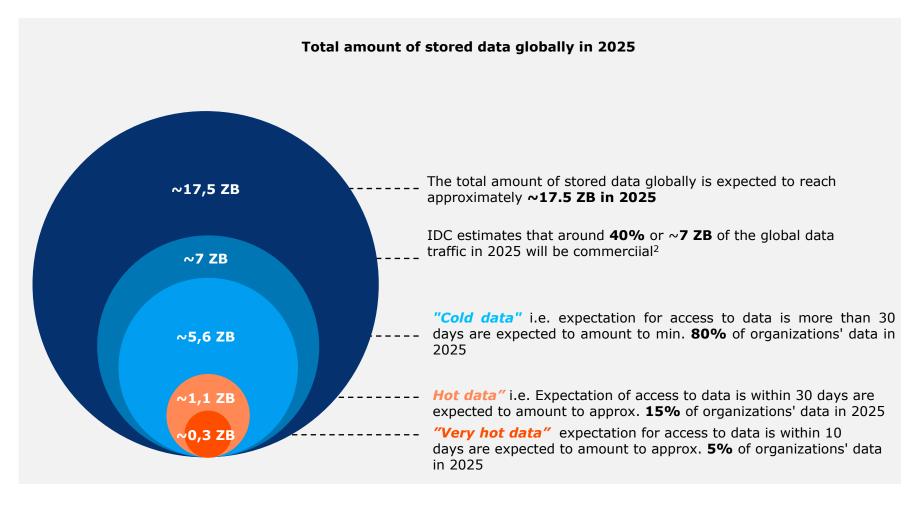

This report has been prepared in connection with a competence development and counseling course, supported by the Beyond Beta program.

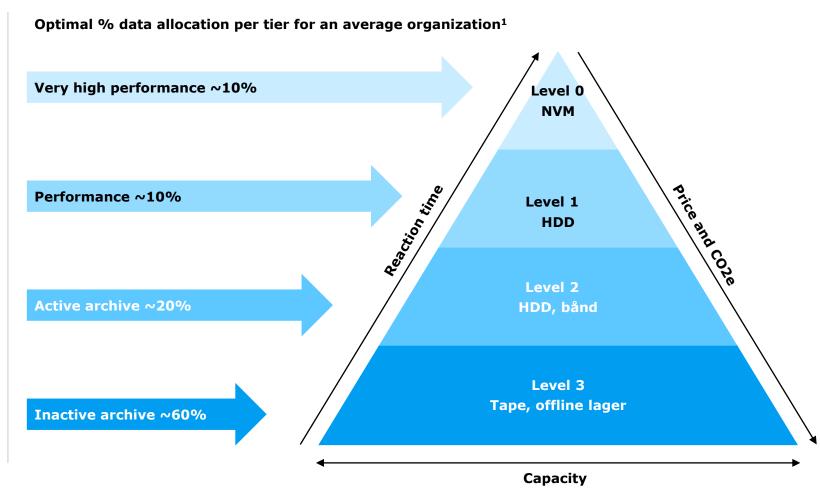
The purpose of the report is to demonstrate what effect Intelligent data storage has on optimization of organizations' costs and reduction of their climate footprint.

Greenhouse gas emissions from data storage are a growing global challenge, which creates a great demand for solutions



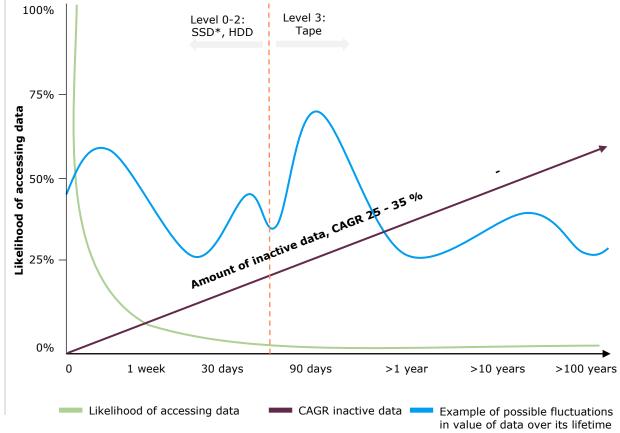
Global data traffic is expected to reach approximately 175 ZB i 2025 of which 10% or ~17.5 ZB data is expected to be stored

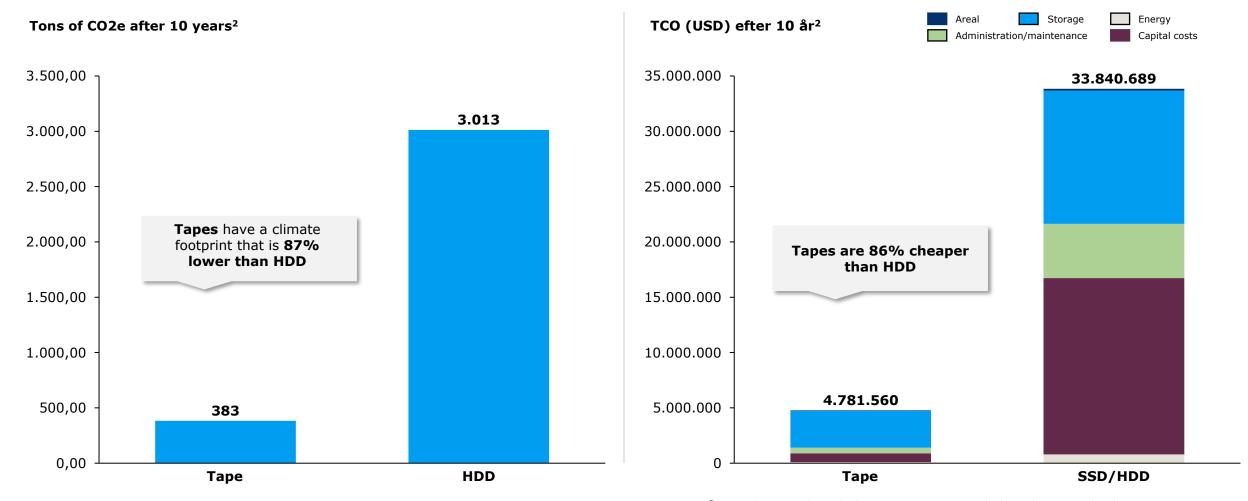
Data centers are expected to make up 3.2% of global greenhouse gas emissions in 2025. And in 2040 it is expected this proportion to rise to 14%, which is why there is a great need for effective data storage solutions³


Cold/inactive data constitutes the fastest growing data segment and expected to account for ~ 5.6 ZB of commercial data by $2025^{1,2}$

- IDC expects that commercial data, i.e. data belonging to organisations, amounts to approx. 40% of the total amount of stored data globally
- The total amount of stored commercial data can be further segmented as hot/ cold, depending on when the data is expected to be accessed by the user
- Horison Information Strategies estimates that 60% of data today can be classified as cold/inactive data, i.e. data that a user rarely or never accesses or changes, and that this proportion may rise to 80%in 2025¹
- Cold/inactive data thus constitutes the largest and fastest growing data segment
- Thus, there is a great need for solutions that can be stored cold/inactive data in an energy- and cost-efficient manner

Today, many organizations store their inactive/cold data on energy-intensive solutions, which is inefficient¹


- As organizations' volume of data and therefore storage needs grow, correct segmentation and storage of data becomes more important^{1,2}
- Today, many organizations store their cold/inactive data on energy-intensive solutions such as HDD*, resulting in high costs and a high climate footprint²
- Organizations can thus achieve savings in costs and climate footprint by moving their cold/inactive data to storage solutions such as tape storage, which have a lower energy consumption
- Archive storage is suitable for cold/inactive data that an organization does not need to use every day
- The benefits of archival storage include lower costs and climate footprint due to lower energy consumption compared to SSD** and HDD¹
- The primary disadvantage associated with archive storage is the longer response time, which means that data that needs to be accessed immediately or very quickly is not suitable for this type of data storage
- On the right, Horizon Information Strategies' proposal for how an organization's data is optimally stored in various storage solutions can be seen


Data should be stored according to how often it is accessed and where valuable it is to the organization^{1,2}

- The challenge for many organizations is to understand which data is hot/ active and which data is cold/inactive, and thus which can be moved to longterm storage^{1,2}
- The segmentation of data should take into account various factors (see figure on the right):
 - 1. The probability of accessing the vast majority of data decreases with the age of the data. Some data already becomes inactive as it is generated, but for most types of data the probability of user access drops one month after data was generated and typically below 1% after 90-120 days
 - 2. The value of specific data to an organization may vary over time
 - **3.** The amount of stored data is steadily increasing as more data is generated and data is generally stored for a longer period of time, i.e. a long life cycle is becoming more normal with storage periods exceeding 100 years. This also increases the amount of data that should be stored in level 3
- Software that automatically and intelligently moves data based on the frequency of access to data therefore becomes attractive, i.e.
 - ✓ Data that is rarely accessed and becomes inactive is automatically moved to archive storage
 - ✓ If the **frequency of data access increases**, data from archive storage is moved **to a higher storage level** (0, 1 or 2), while data whose **frequency of access decreases** over a period of time is **moved to a lower level**

Examples of factors that influence how data should be stored^{1,2}

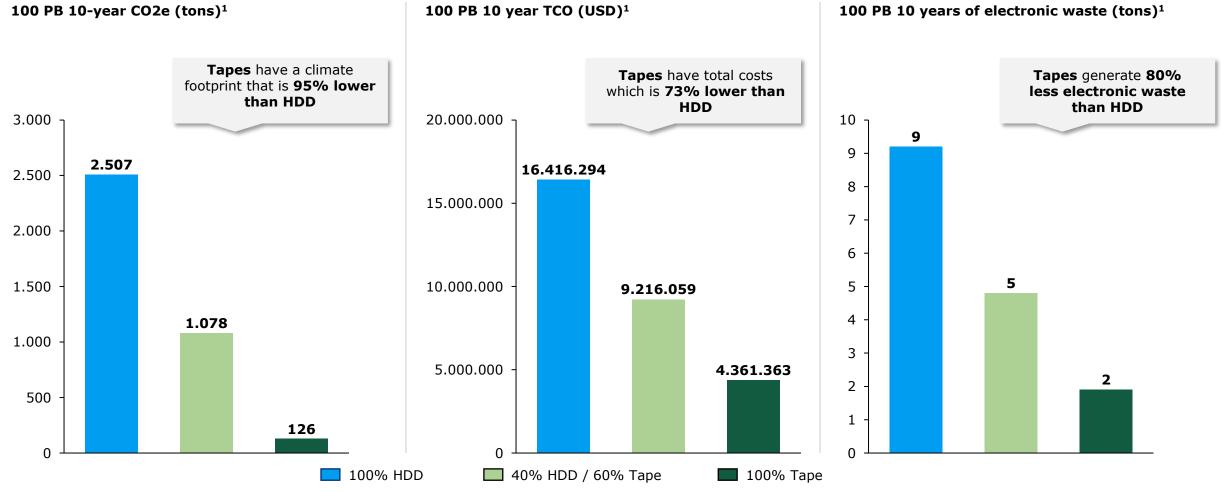
Tape storage appears to be the most cost-effective energy-efficient solution compared to SSD and HDD¹

¹Reducing Data Center Energy Consumption and Carbon Emissions with Modern Tape Storage, Brad Johns Consulting LLC (2020); ²10PB with an annual growth of 35% over a 10-year period. The study assumes that the electricity to data storage comes from gas.

Ramboll

Tape storage appears to be the most cost-effective solution compared to disk and cloud archive¹

Comparison of TCO* for different storage solutions (total after 10 years in USD)¹


- Tapes are respectively 79% and 72% cheaper than disk and cloud storage after a 10-year period
- The savings of using tape storage instead of storage on disks and Cloud is more pronounced after a 10-year than a 5-year period
- This is because tape has a longer lifespan (>30 years) than disk systems, which on average need to be replaced every 5 years
- At the same time, tape storage is cheaper than Cloud storage due to the latter's ongoing annual cost associated with the storage, movement and retrieval of data

	Automated tape system	Cloud archive	Disk system
TCO after 5 years (USD)	1.508.715	3.594.966	5.285.564
TCO after 10 years (USD)	3.482.389	12.367.378	16.202.346

¹TCO Calculator for Data Storage - How much can you save by using tape for enterprise backup/archive storage? Fujifilm (2023). **The model assumes 20PB of data stored in year 1 with an annual growth of 30% over 10 years and that 12% of the stored data must be downloaded per year. Note that TCO = total cost of ownership in the model includes the initial costs associated with purchasing hardware, software and warranties, operational costs associated with maintenance and support, electricity and cooling, etc., and replacement of technology

Tape storage has both a lower climate footprint and price as well generates less electronic waste compared to HDD

Knowledge Resources | Intelligent data storage can optimize organizations' costs and lower their climate footprint

Title	Source	Year
Tape to Play Critical Roles as the Zettabyte Era Takes Off	Tape Storage Council	2022
Accelerating Green Datacenter Progress with Sustainable Storage Strategies	International Data Corporation (IDC)	2021
Tiered Storage – Storage Optimization for the Zettabyte Era	Horison Information Strategies	2021
White Paper – Tape and Cloud: Solving Storage Problems in the Zettabyte Era of Data	Phil Goodwin	2019
Tiered Storage – Building the Optimal Storage Infrastructure	Horison Information Strategies	2020
Reducing Data Center Energy Consumption and Carbon Emissions with Modern Tape Storage	Brad Johns Consulting L.L.C.	2020
TCO Calculator for Data Storage – How much can you save by using tape for enterprise backup/archive storage?	Fujifilm	2023
Improving Information Technology Sustainability with Tape Storage	Brad Johns Consulting L.L.C.	2021
The future of tape – white paper	Fujitsu	2022
Magnetic tape is alive and well: Now you can store 580 terabytes on one tape	Ingeniøren	2021

Knowledge Resources | Intelligent data storage can optimize organizations' costs and lower their climate footprint

Title	Source	Year
Effective Data Management Through Active Archives	The Active Archive Alliance	2023
Preservation or Deletion: Archiving and accessing the dataverse	John Monroe, Further Market Research	2023
Tape Becomes a Key Enabler for the Zettabyte Era	Horison Information Strategies	2021
How Tape Technology Delivers Value in Modern Data-driven Businesses	IBM and Fujifilm	2021
A more comprehensive TCO study	Brad Johns Consulting L.L.C.	2019

Bright ideas. Sustainable change.

RAMBOLL